LTT-GAN: Looking Through Turbulence by Inverting GANs
In many applications of long-range imaging, we are faced with a scenario where a person appearing in the captured imagery is often degraded by atmospheric turbulence. However, restoring such degraded images for face verification is difficult since the degradation causes images to be geometrically distorted and blurry. To mitigate the turbulence effect, in this paper, we propose the first turbulence mitigation method that makes use of visual priors encapsulated by a well-trained GAN. Based on the visual priors, we propose to learn to preserve the identity of restored images on a spatial periodic contextual distance. Such a distance can keep the realism of restored images from the GAN while considering the identity difference at the network learning. In addition, hierarchical pseudo connections are proposed for facilitating the identity-preserving learning by introducing more appearance variance without identity changing. Extensive experiments show that our method significantly outperforms prior art in both the visual quality and face verification accuracy of restored results.
READ FULL TEXT