M-to-N Backdoor Paradigm: A Stealthy and Fuzzy Attack to Deep Learning Models
Recent studies show that deep neural networks (DNNs) are vulnerable to backdoor attacks. A backdoor DNN model behaves normally with clean inputs, whereas outputs attacker's expected behaviors when the inputs contain a pre-defined pattern called a trigger. However, in some tasks, the attacker cannot know the exact target that shows his/her expected behavior, because the task may contain a large number of classes and the attacker does not have full access to know the semantic details of these classes. Thus, the attacker is willing to attack multiple suspected targets to achieve his/her purpose. In light of this, in this paper, we propose the M-to-N backdoor attack, a new attack paradigm that allows an attacker to launch a fuzzy attack by simultaneously attacking N suspected targets, and each of the N targets can be activated by any one of its M triggers. To achieve a better stealthiness, we randomly select M clean images from the training dataset as our triggers for each target. Since the triggers used in our attack have the same distribution as the clean images, the inputs poisoned by the triggers are difficult to be detected by the input-based defenses, and the backdoor models trained on the poisoned training dataset are also difficult to be detected by the model-based defenses. Thus, our attack is stealthier and has a higher probability of achieving the attack purpose by attacking multiple suspected targets simultaneously in contrast to prior backdoor attacks. Extensive experiments show that our attack is effective against different datasets with various models and achieves high attack success rates (e.g., 99.43 targets and 98.23 poisoning only an extremely small portion of the training dataset (e.g., less than 2 state-of-the-art defenses.
READ FULL TEXT