Machine Learning Analysis of Heterogeneity in the Effect of Student Mindset Interventions

11/14/2018
by   Fredrik D. Johansson, et al.
0

We study heterogeneity in the effect of a mindset intervention on student-level performance through an observational dataset from the National Study of Learning Mindsets (NSLM). Our analysis uses machine learning (ML) to address the following associated problems: assessing treatment group overlap and covariate balance, imputing conditional average treatment effects, and interpreting imputed effects. By comparing several different model families we illustrate the flexibility of both off-the-shelf and purpose-built estimators. We find that the mindset intervention has a positive average effect of 0.26, 95 moderated by school-level achievement level, poverty concentration, urbanicity, and student prior expectations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro