Making Sense of Computational Psychiatry

02/04/2020
by   LR Mujica-Parodi, et al.
0

In psychiatry, we often speak of constructing "models." Here we try to make sense of what such a claim might mean, starting with the most fundamental question: "What is (and isn't) a model?". We then discuss, in a concrete measurable sense, what it means for a model to be useful. In so doing, we first identify the added value that a computational model can provide, in the context of accuracy and power. We then present the limitations of standard statistical methods and provide suggestions for how we can expand the explanatory power of our analyses by reconceptualizing statistical models as dynamical systems. Finally, we address the problem of model building, suggesting ways in which computational psychiatry can escape the potential for cognitive biases imposed by classical hypothesis-driven research, exploiting deep systems-level information contained within neuroimaging data to advance our understanding of psychiatric neuroscience.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro