Marginality: a numerical mapping for enhanced treatment of nominal and hierarchical attributes

02/27/2012
by   Josep Domingo-Ferrer, et al.
0

The purpose of statistical disclosure control (SDC) of microdata, a.k.a. data anonymization or privacy-preserving data mining, is to publish data sets containing the answers of individual respondents in such a way that the respondents corresponding to the released records cannot be re-identified and the released data are analytically useful. SDC methods are either based on masking the original data, generating synthetic versions of them or creating hybrid versions by combining original and synthetic data. The choice of SDC methods for categorical data, especially nominal data, is much smaller than the choice of methods for numerical data. We mitigate this problem by introducing a numerical mapping for hierarchical nominal data which allows computing means, variances and covariances on them.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset