Matrix functions via linear systems built from continued fractions

09/08/2021
by   Andreas Frommer, et al.
0

A widely used approach to compute the action f(A)v of a matrix function f(A) on a vector v is to use a rational approximation r for f and compute r(A)v instead. If r is not computed adaptively as in rational Krylov methods, this is usually done using the partial fraction expansion of r and solving linear systems with matrices A- τ I for the various poles τ of r. Here we investigate an alternative approach for the case that a continued fraction representation for the rational function is known rather than a partial fraction expansion. This is typically the case, for example, for Padé approximations. From the continued fraction, we first construct a matrix pencil from which we then obtain what we call the CF-matrix (continued fraction matrix), a block tridiagonal matrix whose blocks consist of polynomials of A with degree bounded by 1 for many continued fractions. We show that one can evaluate r(A)v by solving a single linear system with the CF-matrix and present a number of first theoretical results as a basis for an analysis of future, specific solution methods for the large linear system. While the CF-matrix approach is of principal interest on its own as a new way to compute f(A)v, it can in particular be beneficial when a partial fraction expansion is not known beforehand and computing its parameters is ill-conditioned. We report some numerical experiments which show that with standard preconditioners we can achieve fast convergence in the iterative solution of the large linear system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset