Maximizing the Sum of the Distances between Four Points on the Unit Hemisphere

01/03/2022
by   Zhenbing Zeng, et al.
0

In this paper, we prove a geometrical inequality which states that for any four points on a hemisphere with the unit radius, the largest sum of distances between the points is 4+4*sqrt(2). In our method, we have constructed a rectangular neighborhood of the local maximum point in the feasible set, which size is explicitly determined, and proved that (1): the objective function is bounded by a quadratic polynomial which takes the local maximum point as the unique critical point in the neighborhood, and (2): the rest part of the feasible set can be partitioned into a finite union of a large number of very small cubes so that on each small cube the conjecture can be verified by estimating the objective function with exact numerical computation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset