Maximum likelihood estimation for matrix normal models via quiver representations

07/20/2020
by   Harm Derksen, et al.
0

In this paper, we study the log-likelihood function and Maximum Likelihood Estimate (MLE) for the matrix normal model for both real and complex models. We describe the exact number of samples needed to achieve (almost surely) three conditions, namely a bounded log-likelihood function, existence of MLEs, and uniqueness of MLEs. As a consequence, we observe that almost sure boundedness of log-likelihood function guarantees almost sure existence of an MLE, thereby proving a conjecture of Drton, Kuriki and Hoff. The main tools we use are from the theory of quiver representations, in particular, results of Kac, King and Schofield on canonical decomposition and stability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset