MDP: A Generalized Framework for Text-Guided Image Editing by Manipulating the Diffusion Path

03/29/2023
by   Qian Wang, et al.
0

Image generation using diffusion can be controlled in multiple ways. In this paper, we systematically analyze the equations of modern generative diffusion networks to propose a framework, called MDP, that explains the design space of suitable manipulations. We identify 5 different manipulations, including intermediate latent, conditional embedding, cross attention maps, guidance, and predicted noise. We analyze the corresponding parameters of these manipulations and the manipulation schedule. We show that some previous editing methods fit nicely into our framework. Particularly, we identified one specific configuration as a new type of control by manipulating the predicted noise, which can perform higher-quality edits than previous work for a variety of local and global edits.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset