Memory-based Combination PUFs for Device Authentication in Embedded Systems

12/05/2017
by   Soubhagya Sutar, et al.
0

Embedded systems play a crucial role in fueling the growth of the Internet-of-Things (IoT) in application domains such as healthcare, home automation, transportation, etc. However, their increasingly network-connected nature, coupled with their ability to access potentially sensitive/confidential information, has given rise to many security and privacy concerns. An additional challenge is the growing number of counterfeit components in these devices, resulting in serious reliability and financial implications. Physically Unclonable Functions (PUFs) are a promising security primitive to help address these concerns. Memory-based PUFs are particularly attractive as they require minimal or no additional hardware for their operation. However, current memory-based PUFs utilize only a single memory technology for constructing the PUF, which has several disadvantages including making them vulnerable to security attacks. In this paper, we propose the design of a new memory-based combination PUF that intelligently combines two memory technologies, SRAM and DRAM, to overcome these shortcomings. The proposed combination PUF exhibits high entropy, supports a large number of challenge-response pairs, and is intrinsically reconfigurable. We have implemented the proposed combination PUF using a Terasic TR4-230 FPGA board and several off-the-shelf SRAMs and DRAMs. Experimental results demonstrate substantial improvements over current memory-based PUFs including the ability to resist various attacks. Extensive authentication tests across a wide temperature range (20 - 60 deg. Celsius) and accelerated aging (12 months) demonstrate the robustness of the proposed design, which achieves a 100 true-positive rate and 0 parameter ranges.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset