Meta Transferring for Deblurring

10/14/2022
by   Po-Sheng Liu, et al.
0

Most previous deblurring methods were built with a generic model trained on blurred images and their sharp counterparts. However, these approaches might have sub-optimal deblurring results due to the domain gap between the training and test sets. This paper proposes a reblur-deblur meta-transferring scheme to realize test-time adaptation without using ground truth for dynamic scene deblurring. Since the ground truth is usually unavailable at inference time in a real-world scenario, we leverage the blurred input video to find and use relatively sharp patches as the pseudo ground truth. Furthermore, we propose a reblurring model to extract the homogenous blur from the blurred input and transfer it to the pseudo-sharps to obtain the corresponding pseudo-blurred patches for meta-learning and test-time adaptation with only a few gradient updates. Extensive experimental results show that our reblur-deblur meta-learning scheme can improve state-of-the-art deblurring models on the DVD, REDS, and RealBlur benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro