MetaPoison: Practical General-purpose Clean-label Data Poisoning

04/01/2020
by   W. Ronny Huang, et al.
0

Data poisoning–the process by which an attacker takes control of a model by making imperceptible changes to a subset of the training data–is an emerging threat in the context of neural networks. Existing attacks for data poisoning have relied on hand-crafted heuristics. Instead, we pose crafting poisons more generally as a bi-level optimization problem, where the inner level corresponds to training a network on a poisoned dataset and the outer level corresponds to updating those poisons to achieve a desired behavior on the trained model. We then propose MetaPoison, a first-order method to solve this optimization quickly. MetaPoison is effective: it outperforms previous clean-label poisoning methods by a large margin under the same setting. MetaPoison is robust: its poisons transfer to a variety of victims with unknown hyperparameters and architectures. MetaPoison is also general-purpose, working not only in fine-tuning scenarios, but also for end-to-end training from scratch with remarkable success, e.g. causing a target image to be misclassified 90 time via manipulating just 1 achieve arbitrary adversary goals not previously possible–like using poisons of one class to make a target image don the label of another arbitrarily chosen class. Finally, MetaPoison works in the real-world. We demonstrate successful data poisoning of models trained on Google Cloud AutoML Vision. Code and premade poisons are provided at https://github.com/wronnyhuang/metapoison

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset