Minimalistic Attacks: How Little it Takes to Fool a Deep Reinforcement Learning Policy

11/10/2019
by   Xinghua Qu, et al.
0

Recent studies have revealed that neural network-based policies can be easily fooled by adversarial examples. However, while most prior works analyze the effects of perturbing every pixel of every frame assuming white-box policy access, in this paper, we take a more minimalistic view towards adversary generation - with the goal of unveiling the limits of a model's vulnerability. In particular, we explore highly restrictive attacks considering three key settings: (1) black-box policy access: where the attacker only has access to the input (state) and output (action probability) of an RL policy; (2) fractional-state adversary: where only several pixels are perturbed, with the extreme case being a single-pixel adversary; and (3) tactically-chanced attack: where only significant frames are tactically chosen to be attacked.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro