Misspecified and Asymptotically Minimax Robust Quickest Change Diagnosis

04/21/2020
by   Timothy L. Molloy, et al.
0

The problem of quickly diagnosing an unknown change in a stochastic process is studied. We establish novel bounds on the performance of misspecified diagnosis algorithms designed for changes that differ from those of the process, and pose and solve a new robust quickest change diagnosis problem in the asymptotic regime of few false alarms and false isolations. Simulations suggest that our asymptotically robust solution offers a computationally efficient alternative to generalised likelihood ratio algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro