Mixed Formal Learning: A Path to Transparent Machine Learning

01/20/2019
by   Sandra Carrico, et al.
0

This paper presents Mixed Formal Learning, a new architecture that learns models based on formal mathematical representations of the domain of interest and exposes latent variables. The second element in the architecture learns a particular skill, typically by using traditional prediction or classification mechanisms. Our key findings include that this architecture: (1) Facilitates transparency by exposing key latent variables based on a learned mathematical model; (2) Enables Low Shot and Zero Shot training of machine learning without sacrificing accuracy or recall.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro