Mixing of 3-term progressions in Quasirandom Groups

09/26/2021
by   Amey Bhangale, et al.
0

In this note, we show the mixing of three-term progressions (x, xg, xg^2) in every finite quasirandom groups, fully answering a question of Gowers. More precisely, we show that for any D-quasirandom group G and any three sets A_1, A_2, A_3 ⊂ G, we have |_x,y∼ G[ x ∈ A_1, xy ∈ A_2, xy^2 ∈ A_3] - ∏_i=1^3 _x∼ G[x ∈ A_i] | ≤(2/√(D))^1/4. Prior to this, Tao answered this question when the underlying quasirandom group is SL_d(𝔽_q). Subsequently, Peluse extended the result to all nonabelian finite simple groups. In this work, we show that a slight modification of Peluse's argument is sufficient to fully resolve Gower's quasirandom conjecture for 3-term progressions. Surprisingly, unlike the proofs of Tao and Peluse, our proof is elementary and only uses basic facts from nonabelian Fourier analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset