MoCLIM: Towards Accurate Cancer Subtyping via Multi-Omics Contrastive Learning with Omics-Inference Modeling

08/17/2023
by   Ziwei Yang, et al.
0

Precision medicine fundamentally aims to establish causality between dysregulated biochemical mechanisms and cancer subtypes. Omics-based cancer subtyping has emerged as a revolutionary approach, as different level of omics records the biochemical products of multistep processes in cancers. This paper focuses on fully exploiting the potential of multi-omics data to improve cancer subtyping outcomes, and hence developed MoCLIM, a representation learning framework. MoCLIM independently extracts the informative features from distinct omics modalities. Using a unified representation informed by contrastive learning of different omics modalities, we can well-cluster the subtypes, given cancer, into a lower latent space. This contrast can be interpreted as a projection of inter-omics inference observed in biological networks. Experimental results on six cancer datasets demonstrate that our approach significantly improves data fit and subtyping performance in fewer high-dimensional cancer instances. Moreover, our framework incorporates various medical evaluations as the final component, providing high interpretability in medical analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset