Model-agnostic and Scalable Counterfactual Explanations via Reinforcement Learning

Counterfactual instances are a powerful tool to obtain valuable insights into automated decision processes, describing the necessary minimal changes in the input space to alter the prediction towards a desired target. Most previous approaches require a separate, computationally expensive optimization procedure per instance, making them impractical for both large amounts of data and high-dimensional data. Moreover, these methods are often restricted to certain subclasses of machine learning models (e.g. differentiable or tree-based models). In this work, we propose a deep reinforcement learning approach that transforms the optimization procedure into an end-to-end learnable process, allowing us to generate batches of counterfactual instances in a single forward pass. Our experiments on real-world data show that our method i) is model-agnostic (does not assume differentiability), relying only on feedback from model predictions; ii) allows for generating target-conditional counterfactual instances; iii) allows for flexible feature range constraints for numerical and categorical attributes, including the immutability of protected features (e.g. gender, race); iv) is easily extended to other data modalities such as images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro