Model Based Framework for Estimating Mutation Rate of Hepatitis C Virus in Egypt

03/21/2013
by   Nabila Shikoun, et al.
0

Hepatitis C virus (HCV) is a widely spread disease all over the world. HCV has very high mutation rate that makes it resistant to antibodies. Modeling HCV to identify the virus mutation process is essential to its detection and predicting its evolution. This paper presents a model based framework for estimating mutation rate of HCV in two steps. Firstly profile hidden Markov model (PHMM) architecture was builder to select the sequences which represents sequence per year. Secondly mutation rate was calculated by using pair-wise distance method between sequences. A pilot study is conducted on NS5B zone of HCV dataset of genotype 4 subtype a (HCV4a) in Egypt.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro