Model-based tools for assessing space and time change in daily maximum temperature: an application to the Ebro basin in Spain
There is continuing interest in the investigation of change in temperature over space and time. We offer a set of tools to illuminate such change temporally, at desired temporal resolution, and spatially, according to region of interest, using data generated from suitable space-time models. These tools include predictive spatial probability surfaces and spatial extents for an event. Working with exceedance events around the center of the temperature distribution, the probability surfaces capture the spatial variation in the risk of an exceedance event, while the spatial extents capture the expected proportion of incidence of a given exceedance event for a region of interest. Importantly, the proposed tools can be used with the output from any suitable model fitted to any set of spatially referenced time series data. As an illustration, we employ a dataset from 1956 to 2015 collected at 18 stations over Aragón in Spain, and a collection of daily maximum temperature series obtained from posterior predictive simulation of a Bayesian hierarchical daily temperature model. The results for the summer period show that although there is an increasing risk in all the events used to quantify the effects of climate change, it is not spatially homogeneous, with the largest increase arising in the center of Ebro valley and Eastern Pyrenees area. The risk of an increase of the average temperature between 1966-1975 and 2006-2015 higher than 1^∘C is higher than 0.5 all over the region, and close to 1 in the previous areas. The extent of daily temperature higher than the reference mean has increased 3.5 indicates that 95 the average temperature, and almost 70
READ FULL TEXT