Model order reduction of layered waveguides via rational Krylov fitting

03/31/2022
by   Vladimir Druskin, et al.
0

Rational approximation recently emerged as an efficient numerical tool for the solution of exterior wave propagation problems. Currently, this technique is limited to wave media which are invariant along the main propagation direction. We propose a new model order reduction-based approach for compressing unbounded waveguides with layered inclusions. It is based on the solution of a nonlinear rational least squares problem using the RKFIT method. We show that approximants can be converted into an accurate finite difference representation within a rational Krylov framework. Numerical experiments indicate that RKFIT computes more accurate grids than previous analytic approaches and even works in the presence of pronounced scattering resonances. Spectral adaptation effects allow for finite difference grids with dimensions near or even below the Nyquist limit.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset