Model Selection for Simulator-based Statistical Models: A Kernel Approach

02/07/2019
by   Takafumi Kajihara, et al.
0

We propose a novel approach to model selection for simulator-based statistical models. The proposed approach defines a mixture of candidate models, and then iteratively updates the weight coefficients for those models as well as the parameters in each model simultaneously; this is done by recursively applying Bayes' rule, using the recently proposed kernel recursive ABC algorithm. The practical advantage of the method is that it can be used even when a modeler lacks appropriate prior knowledge about the parameters in each model. We demonstrate the effectiveness of the proposed approach with a number of experiments, including model selection for dynamical systems in ecology and epidemiology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro