Model Selection in Bayesian Neural Networks via Horseshoe Priors
Bayesian Neural Networks (BNNs) have recently received increasing attention for their ability to provide well-calibrated posterior uncertainties. However, model selection---even choosing the number of nodes---remains an open question. In this work, we apply a horseshoe prior over node pre-activations of a Bayesian neural network, which effectively turns off nodes that do not help explain the data. We demonstrate that our prior prevents the BNN from under-fitting even when the number of nodes required is grossly over-estimated. Moreover, this model selection over the number of nodes doesn't come at the expense of predictive or computational performance; in fact, we learn smaller networks with comparable predictive performance to current approaches.
READ FULL TEXT