Modeling Coverage for Neural Machine Translation

01/19/2016
by   Zhaopeng Tu, et al.
0

Attention mechanism has enhanced state-of-the-art Neural Machine Translation (NMT) by jointly learning to align and translate. It tends to ignore past alignment information, however, which often leads to over-translation and under-translation. To address this problem, we propose coverage-based NMT in this paper. We maintain a coverage vector to keep track of the attention history. The coverage vector is fed to the attention model to help adjust future attention, which lets NMT system to consider more about untranslated source words. Experiments show that the proposed approach significantly improves both translation quality and alignment quality over standard attention-based NMT.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset