MOEA/D with Uniformly Randomly Adaptive Weights

by   Lucas R. C. de Farias, et al.

When working with decomposition-based algorithms, an appropriate set of weights might improve quality of the final solution. A set of uniformly distributed weights usually leads to well-distributed solutions on a Pareto front. However, there are two main difficulties with this approach. Firstly, it may fail depending on the problem geometry. Secondly, the population size becomes not flexible as the number of objectives increases. In this paper, we propose the MOEA/D with Uniformly Randomly Adaptive Weights (MOEA/DURAW) which uses the Uniformly Randomly method as an approach to subproblems generation, allowing a flexible population size even when working with many objective problems. During the evolutionary process, MOEA/D-URAW adds and removes subproblems as a function of the sparsity level of the population. Moreover, instead of requiring assumptions about the Pareto front shape, our method adapts its weights to the shape of the problem during the evolutionary process. Experimental results using WFG41-48 problem classes, with different Pareto front shapes, shows that the present method presents better or equal results in 77.5 state-of-the-art methods in the literature.


page 1

page 2

page 3

page 4


What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-based Evolutionary Multi-Objective Optimisation

The quality of solution sets generated by decomposition-based evolutiona...

An Effective and Efficient Evolutionary Algorithm for Many-Objective Optimization

In evolutionary multi-objective optimization, effectiveness refers to ho...

Averaged Hausdorff Approximations of Pareto Fronts based on Multiobjective Estimation of Distribution Algorithms

In the a posteriori approach of multiobjective optimization the Pareto f...

Hypervolume-Optimal μ-Distributions on Line/Plane-based Pareto Fronts in Three Dimensions

Hypervolume is widely used in the evolutionary multi-objective optimizat...

Evolutionary Many-Objective Optimization Based on Adversarial Decomposition

The decomposition-based method has been recognized as a major approach f...

Learning from Non-Stationary Stream Data in Multiobjective Evolutionary Algorithm

Evolutionary algorithms (EAs) have been well acknowledged as a promising...

Please sign up or login with your details

Forgot password? Click here to reset