More Efficient Policy Learning via Optimal Retargeting

06/20/2019
by   Nathan Kallus, et al.
0

Policy learning can be used to extract individualized treatment regimes from observational data in healthcare, civics, e-commerce, and beyond. One big hurdle to policy learning is a commonplace lack of overlap in the data for different actions, which can lead to unwieldy policy evaluation and poorly performing learned policies. We study a solution to this problem based on retargeting, that is, changing the population on which policies are optimized. We first argue that at the population level, retargeting may induce little to no bias. We then characterize the optimal reference policy centering and retargeting weights in both binary-action and multi-action settings. We do this in terms of the asymptotic efficient estimation variance of the new learning objective. We further consider bias regularization. Extensive empirical results in a simulation study and a case study of targeted job counseling demonstrate that retargeting is a fairly easy way to significantly improve any policy learning procedure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro