MTLTS: A Multi-Task Framework To Obtain Trustworthy Summaries From Crisis-Related Microblogs

12/10/2021
by   Rajdeep Mukherjee, et al.
0

Occurrences of catastrophes such as natural or man-made disasters trigger the spread of rumours over social media at a rapid pace. Presenting a trustworthy and summarized account of the unfolding event in near real-time to the consumers of such potentially unreliable information thus becomes an important task. In this work, we propose MTLTS, the first end-to-end solution for the task that jointly determines the credibility and summary-worthiness of tweets. Our credibility verifier is designed to recursively learn the structural properties of a Twitter conversation cascade, along with the stances of replies towards the source tweet. We then take a hierarchical multi-task learning approach, where the verifier is trained at a lower layer, and the summarizer is trained at a deeper layer where it utilizes the verifier predictions to determine the salience of a tweet. Different from existing disaster-specific summarizers, we model tweet summarization as a supervised task. Such an approach can automatically learn summary-worthy features, and can therefore generalize well across domains. When trained on the PHEME dataset [29], not only do we outperform the strongest baselines for the auxiliary task of verification/rumour detection, we also achieve 21 - 35 ratio of summary tweets, and 16 - 20 existing state-of-the-art solutions for the primary task of trustworthy summarization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro