Multi-Fidelity Bayesian Optimization via Deep Neural Networks

07/06/2020
by   Shibo Li, et al.
0

Bayesian optimization (BO) is a popular framework to optimize black-box functions. In many applications, the objective function can be evaluated at multiple fidelities to enable a trade-off between the cost and accuracy. To reduce the optimization cost, many multi-fidelity BO methods have been proposed. Despite their success, these methods either ignore or over-simplify the strong, complex correlations across the fidelities, and hence can be inefficient in estimating the objective function. To address this issue, we propose Deep Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) that can flexibly capture all kinds of complicated relationships between the fidelities to improve the objective function estimation and hence the optimization performance. We use sequential, fidelity-wise Gauss-Hermite quadrature and moment-matching to fulfill a mutual information-based acquisition function, which is computationally tractable and efficient. We show the advantages of our method in both synthetic benchmark datasets and real-world applications in engineering design.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro