Multi-measures fusion based on multi-objective genetic programming for full-reference image quality assessment

12/04/2017
by   Naima Merzougui, et al.
0

In this paper, we exploit the flexibility of multi-objective fitness functions, and the efficiency of the model structure selection ability of a standard genetic programming (GP) with the parameter estimation power of classical regression via multi-gene genetic programming (MGGP), to propose a new fusion technique for image quality assessment (IQA) that is called Multi-measures Fusion based on Multi-Objective Genetic Programming (MFMOGP). This technique can automatically select the most significant suitable measures, from 16 full-reference IQA measures, used in aggregation and finds weights in a weighted sum of their outputs while simultaneously optimizing for both accuracy and complexity. The obtained well-performing fusion of IQA measures are evaluated on four largest publicly available image databases and compared against state-of-the-art full-reference IQA approaches. Results of comparison reveal that the proposed approach outperforms other state-of-the-art recently developed fusion approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro