Multi-stream 3D FCN with Multi-scale Deep Supervision for Multi-modality Isointense Infant Brain MR Image Segmentation

11/28/2017
by   Guodong Zeng, et al.
0

We present a method to address the challenging problem of segmentation of multi-modality isointense infant brain MR images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Our method is based on context-guided, multi-stream fully convolutional networks (FCN), which after training, can directly map a whole volumetric data to its volume-wise labels. In order to alleviate the poten-tial gradient vanishing problem during training, we designed multi-scale deep supervision. Furthermore, context infor-mation was used to further improve the performance of our method. Validated on the test data of the MICCAI 2017 Grand Challenge on 6-month infant brain MRI segmentation (iSeg-2017), our method achieved an average Dice Overlap Coefficient of 95.4

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro