Multi-View Multiple Clusterings using Deep Matrix Factorization

11/26/2019
by   Shaowei Wei, et al.
10

Multi-view clustering aims at integrating complementary information from multiple heterogeneous views to improve clustering results. Existing multi-view clustering solutions can only output a single clustering of the data. Due to their multiplicity, multi-view data, can have different groupings that are reasonable and interesting from different perspectives. However, how to find multiple, meaningful, and diverse clustering results from multi-view data is still a rarely studied and challenging topic in multi-view clustering and multiple clusterings. In this paper, we introduce a deep matrix factorization based solution (DMClusts) to discover multiple clusterings. DMClusts gradually factorizes multi-view data matrices into representational subspaces layer-by-layer and generates one clustering in each layer. To enforce the diversity between generated clusterings, it minimizes a new redundancy quantification term derived from the proximity between samples in these subspaces. We further introduce an iterative optimization procedure to simultaneously seek multiple clusterings with quality and diversity. Experimental results on benchmark datasets confirm that DMClusts outperforms state-of-the-art multiple clustering solutions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset