Multichannel Variable-Size Convolution for Sentence Classification

03/15/2016
by   Wenpeng Yin, et al.
0

We propose MVCNN, a convolution neural network (CNN) architecture for sentence classification. It (i) combines diverse versions of pretrained word embeddings and (ii) extracts features of multigranular phrases with variable-size convolution filters. We also show that pretraining MVCNN is critical for good performance. MVCNN achieves state-of-the-art performance on four tasks: on small-scale binary, small-scale multi-class and largescale Twitter sentiment prediction and on subjectivity classification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro