Multidimensional adaptive order GP-WENO via kernel-based reconstruction

04/07/2023
by   Ian May, et al.
0

This paper presents a fully multidimensional kernel-based reconstruction scheme for finite volume methods applied to systems of hyperbolic conservation laws, with a particular emphasis on the compressible Euler equations. Non-oscillatory reconstruction is achieved through an adaptive order weighted essentially non-oscillatory (WENO-AO) method cast into a form suited to multidimensional stencils and reconstruction. A kernel-based approach inspired by Gaussian process (GP) modeling is presented here. This approach allows the creation of a scheme of arbitrary order with simply defined multidimensional stencils and substencils. Furthermore, the fully multidimensional nature of the reconstruction allows a more straightforward extension to higher spatial dimensions and removes the need for complicated boundary conditions on intermediate quantities in modified dimension-by-dimension methods. In addition, a new simple-yet-effective set of reconstruction variables is introduced, as well as an easy-to-implement effective limiter for positivity preservation, both of which could be useful in existing schemes with little modification. The proposed scheme is applied to a suite of stringent and informative benchmark problems to demonstrate its efficacy and utility.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro