Multimodal Recommender Systems in the Prediction of Disease Comorbidity

08/30/2023
by   Aashish Cheruvu, et al.
0

While deep-learning based recommender systems utilizing collaborative filtering have been commonly used for recommendation in other domains, their application in the medical domain have been limited. In addition to modeling user-item interactions, we show that deep-learning based recommender systems can be used to model subject-disease code interactions. Two novel applications of deep learning-based recommender systems using Neural Collaborative Filtering (NCF) and Deep Hybrid Filtering (DHF) were utilized for disease diagnosis based on known past patient comorbidities. Two datasets, one incorporating all subject-disease code pairs present in the MIMIC-III database, and the other incorporating the top 50 most commonly occurring diseases, were used for prediction. Accuracy and Hit Ratio@10 were utilized as metrics to estimate model performance. The performance of the NCF model making use of the reduced "top 50" ICD-9 code dataset was found to be lower (accuracy of  80 ratio@10 of 35 ICD-9 codes (accuracy of  90 superior performance of the sparser dataset with all ICD codes can be mainly attributed to the higher volume of data and the robustness of deep-learning based recommender systems with modeling sparse data. Additionally, results from the DHF models reflect better performance than the NCF models, with a better accuracy of 94.4 incorporation of clinical note information. Additionally, compared to literature reports utilizing primarily natural language processing-based predictions for the task of ICD-9 code co-occurrence, the novel deep learning-based recommender systems approach performed better. Overall, the deep learning-based recommender systems have shown promise in predicting disease comorbidity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro