Multipatch Discontinuous Galerkin IGA for the Biharmonic Problem On Surfaces

12/07/2020
by   Stephen E. Moore, et al.
0

We present the analysis of interior penalty discontinuous Galerkin Isogeometric Analysis (dGIGA) for the biharmonic problem on orientable surfaces Ω⊂ℝ^3. Here, we consider a surface consisting of several non-overlapping patches as typical in multipatch dGIGA. Due to the non-overlapping nature of the patches, we construct NURBS approximation spaces which are discontinuous across the patch interfaces via a penalty scheme. By an appropriate discrete norm, we present a priori error estimates for the non-symmetric, symmetric and semi-symmetric interior penalty methods. Finally, we confirm our theoritical results with numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro