Multiple criteria decision-making for lane-change model
Simulation has long been an essential part of testing autonomous driving systems, but only recently has simulation been useful for building and training self-driving vehicles. Vehicle behavioural models are necessary to simulate the interactions between robot cars. This paper proposed a new method to formalize the lane-changing model in urban driving scenarios. We define human incentives from different perspectives, speed incentive, route change incentive, comfort incentive and courtesy incentive etc. We applied a decision-theoretical tool, called Multi-Criteria Decision Making (MCDM) to take these incentive policies into account. The strategy of combination is according to different driving style which varies for each driving. Thus a lane-changing decision selection algorithm is proposed. Not only our method allows for varying the motivation of lane-changing from the purely egoistic desire to a more courtesy concern, but also they can mimic drivers' state, inattentive or concentrate, which influences their driving Behaviour. We define some cost functions and calibrate the parameters with different scenarios of traffic data. Distinguishing driving styles are used to aggregate decision-makers' assessments about various criteria weightings to obtain the action drivers desire most. Our result demonstrates the proposed method can produce varied lane-changing behaviour. Unlike other lane-changing models based on artificial intelligence methods, our model has more flexible controllability.
READ FULL TEXT