Multiresolution Neural Networks for Imaging

08/25/2022
by   Hallison Paz, et al.
11

We present MR-Net, a general architecture for multiresolution neural networks, and a framework for imaging applications based on this architecture. Our coordinate-based networks are continuous both in space and in scale as they are composed of multiple stages that progressively add finer details. Besides that, they are a compact and efficient representation. We show examples of multiresolution image representation and applications to texturemagnification, minification, and antialiasing. This document is the extended version of the paper [PNS+22]. It includes additional material that would not fit the page limitations of the conference track for publication.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset