Multivariate predictions of local reduced-order-model errors and dimensions

01/13/2017
by   Azam Moosavi, et al.
0

This paper introduces multivariate input-output models to predict the errors and bases dimensions of local parametric Proper Orthogonal Decomposition reduced-order models. We refer to these multivariate mappings as the MP-LROM models. We employ Gaussian Processes and Artificial Neural Networks to construct approximations of these multivariate mappings. Numerical results with a viscous Burgers model illustrate the performance and potential of the machine learning based regression MP-LROM models to approximate the characteristics of parametric local reduced-order models. The predicted reduced-order models errors are compared against the multi-fidelity correction and reduced order model error surrogates methods predictions, whereas the predicted reduced-order dimensions are tested against the standard method based on the spectrum of snapshots matrix. Since the MP-LROM models incorporate more features and elements to construct the probabilistic mappings they achieve more accurate results. However, for high-dimensional parametric spaces, the MP-LROM models might suffer from the curse of dimensionality. Scalability challenges of MP-LROM models and the feasible ways of addressing them are also discussed in this study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset