Nanosecond-precision Time-of-Arrival Estimation for Aircraft Signals with low-cost SDR Receivers
Precise Time-of-Arrival (TOA) estimations of aircraft and drone signals are important for a wide set of applications including aircraft/drone tracking, air traffic data verification, or self-localization. Our focus in this work is on TOA estimation methods that can run on low-cost software-defined radio (SDR) receivers, as widely deployed in Mode S / ADS-B crowdsourced sensor networks such as the OpenSky Network. We evaluate experimentally classical TOA estimation methods which are based on a cross-correlation with a reconstructed message template and find that these methods are not optimal for such signals. We propose two alternative methods that provide superior results for real-world Mode S / ADS-B signals captured with low-cost SDR receivers. The best method achieves a standard deviation error of 1.5 ns.
READ FULL TEXT