Near-optimal Anomaly Detection in Graphs using Lovasz Extended Scan Statistic

12/11/2013
by   James Sharpnack, et al.
0

The detection of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. Beyond its wide applicability, graph structured anomaly detection serves as a case study in the difficulty of balancing computational complexity with statistical power. In this work, we develop from first principles the generalized likelihood ratio test for determining if there is a well connected region of activation over the vertices in the graph in Gaussian noise. Because this test is computationally infeasible, we provide a relaxation, called the Lovasz extended scan statistic (LESS) that uses submodularity to approximate the intractable generalized likelihood ratio. We demonstrate a connection between LESS and maximum a-posteriori inference in Markov random fields, which provides us with a poly-time algorithm for LESS. Using electrical network theory, we are able to control type 1 error for LESS and prove conditions under which LESS is risk consistent. Finally, we consider specific graph models, the torus, k-nearest neighbor graphs, and epsilon-random graphs. We show that on these graphs our results provide near-optimal performance by matching our results to known lower bounds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset