Network Anomaly Detection: A Survey and Comparative Analysis of Stochastic and Deterministic Methods

09/19/2013
by   Jing Wang, et al.
0

We present five methods to the problem of network anomaly detection. These methods cover most of the common techniques in the anomaly detection field, including Statistical Hypothesis Tests (SHT), Support Vector Machines (SVM) and clustering analysis. We evaluate all methods in a simulated network that consists of nominal data, three flow-level anomalies and one packet-level attack. Through analyzing the results, we point out the advantages and disadvantages of each method and conclude that combining the results of the individual methods can yield improved anomaly detection results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset