Neural eliminators and classifiers
Classification may not be reliable for several reasons: noise in the data, insufficient input information, overlapping distributions and sharp definition of classes. Faced with several possibilities neural network may in such cases still be useful if instead of a classification elimination of improbable classes is done. Eliminators may be constructed using classifiers assigning new cases to a pool of several classes instead of just one winning class. Elimination may be done with the help of several classifiers using modified error functions. A real life medical application of neural network is presented illustrating the usefulness of elimination.
READ FULL TEXT