Neural Markov Logic Networks

05/31/2019
by   Giuseppe Marra, et al.
0

We introduce Neural Markov Logic Networks (NMLNs), a statistical relational learning system that borrows ideas from Markov logic. Like Markov Logic Networks (MLNs), NMLNs are an exponential-family model for modelling distributions over possible worlds, but unlike MLNs, they do not rely on explicitly specified first-order logic rules. Instead, NMLNs learn an implicit representation of such rules as a neural network that acts as a potential function on fragments of the relational structure. Interestingly, any MLN can be represented as an NMLN. Similarly to recently proposed Neural theorem provers (NTPs) [Rocktäschel and Riedel, 2017], NMLNs can exploit embeddings of constants but, unlike NTPs, NMLNs work well also in their absence. This is extremely important for predicting in settings other than the transductive one. We showcase the potential of NMLNs on knowledge-base completion tasks and on generation of molecular (graph) data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset