Neural Text Generation from Rich Semantic Representations

04/25/2019
by   Valerie Hajdik, et al.
0

We propose neural models to generate high-quality text from structured representations based on Minimal Recursion Semantics (MRS). MRS is a rich semantic representation that encodes more precise semantic detail than other representations such as Abstract Meaning Representation (AMR). We show that a sequence-to-sequence model that maps a linearization of Dependency MRS, a graph-based representation of MRS, to English text can achieve a BLEU score of 66.11 when trained on gold data. The performance can be improved further using a high-precision, broad coverage grammar-based parser to generate a large silver training corpus, achieving a final BLEU score of 77.17 on the full test set, and 83.37 on the subset of test data most closely matching the silver data domain. Our results suggest that MRS-based representations are a good choice for applications that need both structured semantics and the ability to produce natural language text as output.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset