Neutralized Empirical Risk Minimization with Generalization Neutrality Bound

11/06/2015
by   Kazuto Fukuchi, et al.
0

Currently, machine learning plays an important role in the lives and individual activities of numerous people. Accordingly, it has become necessary to design machine learning algorithms to ensure that discrimination, biased views, or unfair treatment do not result from decision making or predictions made via machine learning. In this work, we introduce a novel empirical risk minimization (ERM) framework for supervised learning, neutralized ERM (NERM) that ensures that any classifiers obtained can be guaranteed to be neutral with respect to a viewpoint hypothesis. More specifically, given a viewpoint hypothesis, NERM works to find a target hypothesis that minimizes the empirical risk while simultaneously identifying a target hypothesis that is neutral to the viewpoint hypothesis. Within the NERM framework, we derive a theoretical bound on empirical and generalization neutrality risks. Furthermore, as a realization of NERM with linear classification, we derive a max-margin algorithm, neutral support vector machine (SVM). Experimental results show that our neutral SVM shows improved classification performance in real datasets without sacrificing the neutrality guarantee.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset