New methods for metastimuli: architecture, embeddings, and neural network optimization

02/14/2021
by   Rico A. R. Picone, et al.
0

Six significant new methodological developments of the previously-presented "metastimuli architecture" for human learning through machine learning of spatially correlated structural position within a user's personal information management system (PIMS), providing the basis for haptic metastimuli, are presented. These include architectural innovation, recurrent (RNN) artificial neural network (ANN) application, a variety of atom embedding techniques (including a novel technique we call "nabla" embedding inspired by linguistics), ANN hyper-parameter (one that affects the network but is not trained, e.g. the learning rate) optimization, and meta-parameter (one that determines the system performance but is not trained and not a hyper-parameter, e.g. the atom embedding technique) optimization for exploring the large design space. A technique for using the system for automatic atom categorization in a user's PIMS is outlined. ANN training and hyper- and meta-parameter optimization results are presented and discussed in service of methodological recommendations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro