Non-autoregressive End-to-end Approaches for Joint Automatic Speech Recognition and Spoken Language Understanding
This paper presents the use of non-autoregressive (NAR) approaches for joint automatic speech recognition (ASR) and spoken language understanding (SLU) tasks. The proposed NAR systems employ a Conformer encoder that applies connectionist temporal classification (CTC) to transcribe the speech utterance into raw ASR hypotheses, which are further refined with a bidirectional encoder representations from Transformers (BERT)-like decoder. In the meantime, the intent and slot labels of the utterance are predicted simultaneously using the same decoder. Both Mask-CTC and self-conditioned CTC (SC-CTC) approaches are explored for this study. Experiments conducted on the SLURP dataset show that the proposed SC-Mask-CTC NAR system achieves 3.7 SLU metrics and a competitive level of ASR accuracy, when compared to a Conformer-Transformer based autoregressive (AR) model. Additionally, the NAR systems achieve 6x faster decoding speed than the AR baseline.
READ FULL TEXT