Non-Prehensile Manipulation in Clutter with Human-In-The-Loop

04/07/2019
by   Rafael Papallas, et al.
0

We propose a human-operator guided planning approach to pushing-based robotic manipulation in clutter. Most recent approaches to this problem employs the power of randomized planning (e.g. control-sampling based Kinodynamic RRT) to produce a fast working solution. We build on these control-based randomized planning approaches, but we investigate using them in conjunction with human-operator input. In our framework, the human operator supplies a highlevel plan, in the form of an ordered sequence of objects and their approximate goal positions. We present experiments in simulation and on a real robotic setup, where we compare the success rate and planning times of our human-in-theloop approach with fully autonomous sampling-based planners. We show that the human-operator provided guidance makes the low-level kinodynamic planner solve the planning problem faster and with higher success rates.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro