Nonlinear least-squares spline fitting with variable knots

03/08/2020
by   Péter Kovács, et al.
0

In this paper, we present a nonlinear least-squares fitting algorithm using B-splines with free knots. Since its performance strongly depends on the initial estimation of the free parameters (i.e. the knots), we also propose a fast and efficient knot-prediction algorithm that utilizes numerical properties of first-order B-splines. Using ℓ_p (p=1,2,∞) norm solutions, we also provide three different strategies for properly selecting the free knots. Our initial predictions are then iteratively refined by means of a gradient-based variable projection optimization. Our method is general in nature and can be used to estimate the optimal number of knots in cases in which no a-priori information is available. To evaluate the performance of our method, we approximated a one-dimensional discrete time series and conducted an extensive comparative study using both synthetic and real-world data. We chose the problem of electrocardiogram (ECG) signal compression as a real-world case study. Our experiments on the well-known PhysioNet MIT-BIH Arrhythmia database show that the proposed method outperforms other knot-prediction techniques in terms of accuracy while requiring much lower computational complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro