Number Theoretic Transform and Its Applications in Lattice-based Cryptosystems: A Survey
Number theoretic transform (NTT) is the most efficient method for multiplying two polynomials of high degree with integer coefficients, due to its series of advantages in terms of algorithm and implementation, and is consequently widely-used and particularly fundamental in the practical implementations of lattice-based cryptographic schemes. Especially, recent works have shown that NTT can be utilized in those schemes without NTT-friendly rings, and can outperform other multiplication algorithms. In this paper, we first review the basic concepts of polynomial multiplication, convolution and NTT. Subsequently, we systematically introduce basic radix-2 fast NTT algorithms in an algebraic way via Chinese Remainder Theorem. And then, we elaborate recent advances about the methods to weaken restrictions on parameter conditions of NTT. Furthermore, we systematically introduce how to choose appropriate strategy of NTT algorithms for the various given rings. Later, we introduce the applications of NTT in the lattice-based cryptographic schemes of NIST post-quantum cryptography standardization competition. Finally, we try to present some possible future research directions.
READ FULL TEXT